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Introduction
The mission of the WRRC is to serve as a center of expertise in the water resources field, assist public and
private interests in the conservation, development, and use of water resources, provide opportunities for
professional training, assist local, state, regional, and federal agencies in planning and regulation, and
communicate research findings to interested users. The WRRC administers funding received from the
federal Water Resources Research Act of 1984 and coordinates water-resources research and technology
transfer as authorized by the funding, acts as liaison for Florida Agencies and water management districts,
promotes water-resources research by seeking external support, and seeks to enhance the state and national
image of the University of Florida (UF) as a focal point for water resources research. The WRRC is
funded in part by Section 104 of Public Law 98-42 and Public Law 104-99, which are administered by the
U.S. Geological Survey, Department of the Interior. Additional funding and support are provided by UF
and research sponsors that include state agencies such as the water management districts. 

Research Program
During FY 2005, the Florida Water Resources Research Center (WRRC) supported three research
projects. Two of the projects were supported by funds through the 104B program, and one project was a
continuation of work funded through the 104G program from FY 2004. In the first 104B project, work was
performed to develop an integrated methodology to assess the vulnerability of ground water to pathogen
intrusion using GIS, remote sensing, neural networks and neuro-fuzzy methods. The second 104B project
investigated mechanisms and modeling of soft-bed nutrient release in lakes. In the 104G project,
space-based observations are being used to understand the complexity of wetland surface flow in order to
better manage wetlands and water resources. 
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COMPARISON OF NEURAL NETWORK AND NEURO-FUZZY TECHNIQUES IN GROUND 
WATER VULNERABILITY MAPPING: A CASE STUDY 

 
Barnali Dixon1 

 
 

1. INTRODUCTION 
Contamination of surface and subsurface waters by anthropogenic activities has been a major concern of 

agencies involved with water management, water quality, water quantity and human health. Ground water (GW) 
accounts for 60% of the fresh water withdrawals in Florida and about 51% of this water is being used without 
further treatment or disinfection (Marella, 19999). Occurrence of well-drained sandy soils and karst features along 
with high rainfall makes Florida’s GW, a major source of freshwater supply, vulnerable to contamination (Berndt 
et al, 1998; Purdum, 2002; Lee et. al, 2002). The proportion of outbreaks associated with groundwater sources in 
Florida increased 87% from the previous reporting period, and these outbreaks were primarily associated (60.7%) 
with consumption of untreated groundwater (Lee et. al, 2002). Close connection between ground and surface 
water, common in Florida, means that pathogens found in surface water may find their way into GW and vice 
versa. In recent years, Florida has been one of the most common relocation destinations in the US. Florida's 
population grew from 4 million in 1955 to 16 million in 2000, the highest growth rate in the nation. As a result, 
we have two inevitable problems throughout Florida i) increased amount of wastewater treatment and resultant 
sludge production, and (ii) increased number (and density) of septic systems. One of the dominant ways of sludge 
disposal is land application. Florida Department of health (FLDEP) has established detailed regulations for 
processing sludge before application and controlling the application of sludge to land.  In 2003, 66% of the sludge 
was land applied in Florida, 17% were land-filled, and remaining 17% accounted for distribution and marketing.  
(http://www.dep.state.fl.us/water/wastewater/dom/reshome.htm). In Florida, parks and golf courses are common 
sites for Class A sludge application whereas many farmers apply Class B sludge to their pasture and farmland to 
reduce cost of fertilizer and lime. Since most processes used for complete pathogen/viral inactivation is not 
sufficient (EPA, 2003), landowners and the public as well as regulatory agencies are justifiably concerned about 
potential negative impacts of the potential spread of pathogens and resultant outbreaks.    Therefore, there is a 
need to adopt waste application practices that take into consideration soil properties, hydrogeology, hydraulic 
loading and contaminant transport characteristics to minimize pathogen contamination risk (EPA, 2003). 
Additionally, in Florida, 31% of the population is served by estimated 2.3 million septic systems. These systems 
discharge over 426 million gallons of waste water per day into the subsurface soil environment (Florida Dept. of 
Health (DOH) http://www.doh.state.fl.us/environment/OSTDS/intro.html). Inadequately treated sewage from 
septic systems can lead to contamination of groundwater and poses a significant threat to drinking water and 
human health (http://www.epa.gov/owm/septic/pubs/homeowner_guide_long.pdf). There are no easy solutions to 
the sludge disposal or septic tank problems in Florida. 

Traditionally state and county regulators used fixed setback distances for sludge application and septic 
tank locations for all geologic setting in their jurisdiction to protect our water resources (EPA, 2003). One 
approach in determining setback is to the use travel time using GW flow characteristics (Yeats and Yeats, 1987). 
A comprehensive study conducted by Matthesss et al (1984) that used the aforementioned approach showed that 
ground water flow-based 50 day residence time was not adequate for all of the sites for virus reduction. It takes 
longer and varied between 160 days and 270 days (EPA, 2003). Study conducted for Ground Water Rule showed 
that setback distances were found to be quite variable (EPA, 2000). Some distances were scientific and others 
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were holdovers from past practices (EPA, 2003).  Very few of them considered preferential flow paths common in 
Florida karst. A table summarized by EPA (2003) listed critical factors that control pathogen/viral transport. They 
are: soil moisture content, type and depth of the soils, soil porperties such as  organic matter and pH as well as 
hydraulic conditions to name a few. It is obvious that these factors vary over the landscape. Therefore, one size 
fits all mode of regulations for establishing setback distances might not be adequate. Conducting site- specific 
studies (on a case by case basis) to regulate entire Florida will clearly be cost prohibitive. Therefore, there is a 
need to strike a balance between expensive site-specific studies and broad-based one-size fits all policy. We are 
proposing to develop a spatially explicit method that will provide a vulnerability map for an area based on similar 
hydrogeological, topographical, climatological, soils, preferential flow pathways and landuse. This will be a 
useful environmental management tool to establish setback rules. This vulnerability map will have explicit 
representation of the possible level of risk associated with GW vulnerability to pathogens. In a gross sense, 
information from soil surveys, hydrologeological parameters, and landuse will be incorporated in a screening tool 
that will provide an indication of the level of risk a particular site may have to GW contamination by pathogen.  
 
 
Coupling of neural networks (NN) and neuro-fuzzy models with a Geographic Information System 
(GIS) will facilitate vulnerability mapping of a complex system with enhanced spatial visualization 
capabilities of the models as suggested by Burrough (1996), Corwin et al., (1996). Integration with GIS 
will allow us to evaluate sensitivity of NN and neuro-fuzzy in a spatial context.  
 
NN are multi-input, multi-output nonlinear models and can represent the complex interactions among 
the input/output parameters. In recent years NN has been successfully used in solving difficult 
hydrological and environmental problems. One major criticism is that it is not possible to determine how 
the solution was found due to the inherent black box nature of the NN. Also, it is also not possible to 
insert prior knowledge to a NN. The question is does NN need prior knowledge?? Also, how sensitive 
NNs are??   
 
Incorporation of fuzzy logic with a GIS has shown to reduce error propagation (Wang et, al, 1990; 
Burrough et al 1992; De Gruizter, et al. 1997). Neuro-fuzzy modeling is an approach where the fusion of 
NN and Fuzzy Logic find their strengths and complement each other (Dixon, 2001, 2002, Khan, 1999, 
Nauck and Kruse, 1999). A key disadvantage of fuzzy logic based approach is inability to meet pre 
specified accuracy and lack of self-learning and generalization capability.  
 
Neuro-fuzzy approach employs heuristic learning strategies derived from the domain of NN theory to 
support the development of a fuzzy system. A marriage between NN and fuzzy logic techniques should 
help overcome the shortcomings of both techniques discussed at length by Nauck and Kruse (1999). A 
neuro-fuzzy technique can learn a system’s behavior from a sufficiently large data set and automatically 
generate fuzzy rules and fuzzy sets to a pre-specified accuracy level. They are capable of generalization, 
thus overcoming to the key disadvantages of fuzzy logic based approach. A fusion of NN and fuzzy 
logic provides a system that usually requires less computational power but has the ability to generalize 
and learn through the convergence of net.  The research reports a case study of Polk County, Florida. 
This County was selected for its extensive agricultural landuse and the presence of underlying alluvial 
aquifer.  This study aimed at using selected parameters from the DRASTIC model (Aller et al.,) with the 
NN and Neuro-fuzzy. Authors are aware of the strength and weaknesses of the DRASTIC model. The 
authors used parameters from the DRASTIC in this study because of readily available GIS layers for the 
Polk County. The intention of this study is not to promote or criticize DRASTIC.  
 
 
 



 4

2. OBJECTIVES 
 
This study aims at comparing the vulnerability maps developed using NN and neuro-fuzzy methods. 
Specific objectives are to: i) compare the NN models with neuro-fuzzy and (ii) to check the sensitivity 
of NN and neuro-fuzzy models to training data. 
 
 

3. METHODOLOGY 
 
3.1 Digital Database 
 
The DRASTIC model (Aller et al, 1987) is comprised of seven hydro geological variables: Depth to 
ground water (D), Recharge of aquifer (R), Aquifer media (A), Soil media (S), Topography/slope (T),  
Impact of vadose zone (I) and hydraulic Conductivity (C). Only four out of these seven variables were 
used as inputs for both NN and Neuro-fuzzy models. A, T and C were not used in the models due to lack 
of variability. All seven parameters were derived from the primary data layers in a GIS. The primary 
data layers used in this study are potentiometric surface, elevation, soils and geology. All of these 
primary data layers except soils were obtained from US Geological Survey (USGS). The soils data were 
obtained from the Natural Resource Conservation Service (NRCS). Digital Elevation Models (DEMs) 
with 30m resolution were used to generate elevation data for the study area. Potentiometric surface data 
provided by USGS was collected during the fall of 1996. This data was recorded in contour line with 20 
ft interval. Potentiometric surface was generated using the GRASS command s.surf.tps. The data layer 
for D was generated by subtracting potentiometric surface from elevation. The data layer for net 
recharge was obtained from USGS. The net recharge was calculated based on the past behavior of the 
aquifer using MODFLOW at a one square mile cell resolution. The output from the MODFLOW was a 
site file. The site file was interpolated in GRASS to create the data layer R. The data layer for S was 
created through a multi-step process. Soil leaching index and soil pesticide leaching potential data were 
used to create the layer S. Soil leaching index layer was obtained from annual precipitation and soil 
hydrologic group.  Soil pesticide leaching potential was created from soil attenuation, soil infiltration 
and soil permeability data layers. Soil attenuation information was generated from GLEAMS model. 
Please refer to Smith et al. (1994) for details.  Thickness of the clay cap (I) is an important property 
since it influences the recharge to the aquifer and pesticide adsorption and degradation processes. 
GRASS command s.surf.tps was performed on the point data provided by USGS to create the 
interpolated surface. SSURGO data were used create maps for bulk density (BD), soils drainage class 
(D), soil Hydrologic group (H) (referred together as DH), soils structure or pedality. Landuse data we 
obtained from SWFWMD (1999). 

Water quality data from 55 wells were used for validation of the models. The water quality data 
was provided by the Florida Department of Environmental Protection (FLDEP) in an excel spreadsheet 
containg  well ID with locations of wells collected using a Global Positioning System (GPS). GRASS 
command s.menu was used to create site files for the wells. The wells then were reclassed into 2 
categories: contaminated wells and non-contaminated wells. Single occurrence of E Coli was considered 
as contaminated well. (See Appendix A) for summery..  
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3.2 Coupling of NN and Neuro-fuzzy with GIS 
 
Table 1. Example of Training Data used with NEFCLASS-J. 

 Modeling of GW vulnerability was accomplished by 
loosely coupling GIS (GRASS 4.1) and NN software 
PREDICT (Neuralware, 2001, version 2.4) and the 
Neuro-fuzzy software Nefclass-J (Nauck and Kruse, 
1999 version 1.0).  The output function (single column n 
ASCII output) of NEFCLASS-J was modified to make 
files compatible with the GRASS. The NN software 
PREDICT has limitation of number of rows of data it can 
take. It can only take 132,000 of rows for each run. The 
application data for the Polk County consisted of 
4,093,760 rows. So a custom code in VC++ was written 
to break down our application dataset in manageable size 
for the PREDICT. This custom software is available at 

the website:www.stpt.usf.edu/bdixon/gal/mainpage_final.html. 
 
Table 2. Example of Training Data used with PREDICT. 

 
Use of NN and Neuro-fuzzy requires training data and 
application data. The training  and application data for the 
NEFCLASS-J and PREDICT was obtained from the GIS. 
GRASS command r.stats was used to create training dataset. 
This GRASS command generated all possible combinations 
of  D, R, S and I for the County. The training data consisted 
of 408 rows. Examples of training data are given in the 
Tables 1 and 2. 
 
 

 
 
3.3 Development of Neural Network model 
 
The Standard Back Propagation (SBP) architecture provided by PREDICT was used to perform 
classification. Figure 1 shows the Multi Layer Perceptron (MLP) network architecture. SBP is a method 
for training the MLP. It is a method for assigning responsibility for mismatches to each of the processing 
elements in the network; this is achieved by propagating the gradient of the objective function back 
through the network to the hidden units. Based on the degree of responsibility, the weights of each 

individual processing element are modified iteratively 
to improve the objective function. 
 
Use of NN is a 3-step process: i) training, ii) testing and 
iii) application. The entire training data was divided 
into 2 groups training (286) and testing (214) data sets. 
Once the NN was trained and tested, application data 
consisting of 4,093,760 rows were used to generate 

Nefclass J inputs Output vulnerability 

D R S I Lo
w 

Mod 
low 

Moder
ate 

High 

    NF1     
3 1 1 5 1 0 0 0 

7 3 9 7 0 0 1 0 
7 1 5 8 0 0 0 1 
9 1 2 5 0 1 0 0 

NF2 & NF3     
 63 1 1 35 1 0 0 0 
23 3 9 15 0 0 1 0 

23 1 5 10 0 0 0 1 
10 1 2 35 0 1 0 0 

NN  inputs  
Output 

  D R S I Vulnerability 
NN1  
3 1 1 5 1 Low 
7 3 9 7 3 Moderate 
7 1 5 8 4 High 
9 1 2 5 2 Moderately Low 
NN2 & NN3  
63 1 1 35 1 Low 
23 3 9 15 3 Moderate 
23 1 5 10 4 High 
10 1 2 35 2 Moderately Low 
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ground water vulnerability maps. A batch file written in PREDICT automatically ran all the groups that 
were created, and produced the single column output. Examples of training parameter are presented in 
the Table 3.  
  Figure 1.  Multi layer Perceptron Architecture 

          
The training data for NN models was modified by adding a 0, 0, 0, 0 value to a total number of training 
pattern of 410. This was necessary because it was noted during simulation that an input of 0,0,0,0 in the 
application data resulted in a valid class of 1 (which indicates low vulnerability). But in reality these 
zero value represented data value out of the GIS mask but within the region. The following parameters 
were used with the PREDICT classifier: 

Table 3: Parameters of NN Classifier 

Hidden layer=100 Learning Rate 
Output layer=0.01 

Learning Rule Adaptive gradient 
Variable selection model Multiple regression 
Training and testing 10-fold cross validation 

 
The training data obtained from GRASS was inspected and classified based on expert’s opinion 
according to the relationships between input parameter and the output vulnerability category.  D and I 
are inversely related to the vulnerability categories whereas S and R are directly related. Examples of 
training rules are presented in the Table 4. 

Table 4. Example of Rules used to Define Vulnerability. 

Inputs a 
D             (ft) R       (inch/yr) S        (rate) I              (ft) 

Output vulnerability 
categories b 

Low            (0-5) Low               (0-1) Mod low (mod slow) Low           (11-20) Moderate 
Low Low High               (rapid) Low High 
Low Mod low        (5-7) Low                 (slow) High          (51-75) Moderately  low 
Low Mod low High Low High 
High        (51-75) Mod low Mod low Mod          (31-50) Low 
High Mod             (8-10) Mod low Mod low   (21-30) Moderate 
High High                (20) High                Low High 
High       High High High Moderate 

a = inputs obtained from raster data layers 
b = output vulnerability categories: manually classified based on expert’s opinion. 

 
3.4 Development of Neuro-fuzzy model 
 
Neuro-fuzzy model also uses a supervised learning-like algorithm based on fuzzy error back propagation 
(Figure 2). The learning procedure for the fuzzy sets is a simple heuristics. It results in shifting the 
membership functions and in making their supports larger or smaller (Nauck and Kruse, 1999). The 
adaptation of fuzzy sets is carried out by simply changing the parameters of its membership function in a 
way that the membership degree for the current feature value is increased or decreased respectively. 
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In this research, the trapezoidal membership function 
was used since it was the most stable as compared to 
triangular and bell shaped membership functions 
(Dixon, 2001). The training parameter for the Neuro-
fuzzy models are presented in the Table 5. 
Mathematically, trapezoidal membership function can 
be defined as follows:  
 
 
 
 
 
 
 
 
  

                 Figure 2: Neuro-Fuzzy architecture 
 
 For detailed description of membership functions and Neuro-fuzzy architecture please refer to Nauck 
and Kruse (1999). Use of Neuro-fuzzy model is also a 3-step process: i) training, ii) testing/validation 
and iii) application. The testing/validation technique used with the neuro-fuzzy model is ‘cross 
validation’. This approach randomly divides the training data into the number of parts specified by the 
operator (10-fold for this project) and generalized errors are estimated from the results of the learning 
processes that are provided through a mean error and a confidence interval calculated at the 99% level. 
The same data that was used for training the NN was used here with the exception of two rows 
containing data value of 0,0,0,0. Thus the total number of patterns used for training was 408.  
NEFCLASS-J did not have problem in classifying data that were 0 (outside the GIS mask) as ‘0’ 
category representing not classified category.   
 

Table 5: Parameters of Neuro-fuzzy classifier 

Learning Rate 0.01 
No. of fuzzy sets 4 TRAPEZOIDAL for each variable 
Rule learning strategy Best per class 

Maximum number of epochs=1000 Stop control 
Minimum number if epochs= 100 

Validation mode 10-fold cross validation 
 
 
3.5 Sensitivity Analysis  
 
Sensitivity of the training data set was analyzed by changing the training data. A total of 26 models were 
created using neural networks and neuro-fuzzy methods ((13 per method). All models were compared to 
DRASTIC model too. First set of simulations was run using D, R, S and I value as reflected by the 
weight of the parameters outlined by the DRASTIC model. For details on weight of the parameters 
please refer to Dixon et al., (2002). These models from here on will be referred to as NN1, NN2 and so 
on for neural netweoks models and  NF1, NF2  and so on for neuro fuzzy based models (Table 6).  
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 Table 6. Summary of Model Parameters and Model Names 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
3.6 Coincidence reports 
 
Once the vulnerability maps were generated using the above methods, field data were used to generate 
coincidence reports to evaluate their performances. Water quality data for E Coli for 55 wells were used 
in this study. The well water quality data we provided by FL Dept. of Environmental Protection 
(FLDEP). Sixteen out of 55 wells were contaminated with at least one occurrence ce of E Coli. It was 
assumes 1 E coli is an indicator of the presence of contamination movement pathways. A set of 
coincidence reports was generated between vulnerability maps and well contamination data to compare 
actual contamination with potential contamination (or vulnerability) generated by our models. 
 

 
4. RESULTS AND DISCUSSION 

 
4.1 Training of NN model 
 
The Table 7 shows training results of the NN. Internally each category in the classification output is 
considered to be mutually exclusive and is assigned an output node in the neural net. The relative 
entropy measure ensures that the outputs of the NN enforce the mutual dependence of the outputs. It 
maximizes the probability of successful classification. Ideally a very low value of relative entropy  

Models Neural networks Neuro-fuzzy Name of Model 
Model-1 NN1 NF1 DRASTIC 
Model-2 NN2 NF2 DRASTIC DH 
Model-3 NN3 NF3 DRASTIC,DH,PED 
Model-4 NN4 NF4 DRASTIC,DH,PED LULC 
Model-5 NN5 NF5 DRSI 
Model-6 NN6 NF6 DRSI DH 
Model-7 NN7 NF7 DRSI DH PED 
Model-8 NN8 NF8 DRSI DH PED LULC 
Model-9 NN9 NF9 DH PED LULC 
Model-10 NN10 NF10 PED_DH_BD 
Model-11 NN11 NF11 PED_DH_BD_LULC 
Model-12 NN12 NF12 pH_OM_BD 
Model-13 NN13 NF13 DRASTIC, LULC 
Model-14 NN14 NF14 DRSI, LULC 
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indicates a good fit of the model to the data. The accuracy gives the fraction of records whose prediction 
is within a specified tolerance of the desired output. By default the accuracy tolerance is set to 20% of 
the range of the output.   
 
 
 
 

Table 7.  NN Models: Performance of Training Data. 
Relative Entropy Model name Patterns Training Set 

Accuracy  
Test Set 
Accuracy  

All Data 
Accuracy  Train Test All 

DRASTIC DH 1733 0.86314 0.857692 0.861512 0.09899 0.108067 0.101714
DRASTIC DH PED 2675 0.873397 0.902864 0.882243 0.115352 0.125596 0.118427
DRASTIC DH PED 
LULC 

7159 0.787867 0.799348 0.791312 0.143857 0.151916 0.146275

DRSI 55 1 0.945455 0.945455 0.003272 0.032348 0.032348
DRSI DH 502 0.766382 0.774834 0.768924 0.16442 0.16174 0.163614
DRSI DH PED 830 0.817241 0.8 0.812048 0.191069 0.188303 0.190236
DRSI DH PED LULC NA NA NA NA NA NA NA 
DH PED LULC 160 0.873874 0.857143 0.86875 0.08823 0.121458 0.098406
PED_DH_BD 57 1 0.929825 0.929825 0.006575 0.016977 0.016977
PED_DH_BD_LULC 256 0.73743 0.688312 0.722656 0.206299 0.203072 0.205329
pH_OM_BD NA NA NA NA NA NA NA 

DRASTIC, LULC NA NA NA NA NA NA NA 

DRSI, LULC 187 0.938462 0.929825 0.935829 0.078415 0.077921 0.078264

 
 
 
4.2 Training Results of NF model 
 
The Table 8 shows characteristics of training data used with the Neuro-fuzzy models. For the model 
NF1, the variable R showed maximum SD whereas for the models NF2 and NF3 variable D showed the 
maximum SD.  
 
 
 

Table 8. Characteristics of Training Data for Neuro-fuzzy Models. 

 
Variable Name mean SD minimum Maximum Missing 

NF 1  
Var 1 D 8.07 1.93 3 10 0 
Var 2 R 3.6 2.79 1 10 0 
Var 3 S 3.77 2.44 0 9 0 
Var 4 I 7.09 1.82 3 10 0 

 
NF 2 and NF 3 

Var 1 D 16.92 14.90 3 63 0 
Var 2 R 3.6 2.79 1 10 0 
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Var 3 S 3.77 2.44 0 9 0 
Var 4 I 20.03 13.44 10 63 0 

 
 
 
 
 Table 9 shows performance of the training data used with Neruo-fuzzy models. NF2 showed 
highest number of misclassification as well as error. This error corresponds to the sum of squared 
differences between targets and outputs and is a measure of the ambiguity of classifications. 
 

Table 9. Neuro-fuzzy Models: Performance of Training Data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3 Sensitivity Analysis of NN and NF 
 
4.3.1 Vulnerability maps 
 
The models described below were created in a GIS by incorporating the various permutation 
combination of 14 parameters D, R, A, S, T, I, C, BD, DH, LULC, Soils structure and pedality. The 
same training data sets were used for models are shown in (Tables 6 and 7).  Spatial distribution of 
vulnerability category varied from models to models (Figures 3 and 4).  Due to sheer number of we are 
going to summarize the most interesting simulations in the main document. Please find the 
comprehensive simulation results in the Appendix B. Table 10 shows summery of areal coverage for the 
selected models. 
 
 
 

Name of Model Patterns Accuracy (%) Misclassifications(%) Error 
DRASTIC DH 1733 62.84 37.16 1170.98 
DRASTIC,DH,PED 2677 75.57 24.43 1233.6 
DRASTIC,DH,PED LULC 7159 84.73 15.27 2397.67 
DRSI 55 80 20 25 
DRSI DH 502 58.96 41.04 394 
DRSI DH PED 832 79.81 20.19 363.6 
DRSI DH PED LULC NA NA NA NA 
DH PED LULC 160 82.5 17.5 66.7 
PED_DH_BD 57 71.93 28.07 24.45 
PED_DH_BD_LULC 256 80 20 85 
pH_OM_BD NA NA NA NA 
DRASTIC, LULC NA NA NA NA 
DRSI, LULC 183 90.16 9.84 41.1 
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Figure 3.  Spatial Distribution of vulnerability categories from the model using DH, ped, LULC parameters 
using NF (left); using NN(right) 
 
 

 

     
 
 

       
Figure 4. Spatial Distribution of Vulnerability from Neural networks  models: (left NN2, right  NN3, and 
bottom NN4). Parameters and model names: Drastic DH (NN2), DRASTIC DH, Ped (NN3), DRSTIC , DH, 
Ped, LULC (NN4) 
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Figure 5. Spatial Distribution of Vulnerability from Neuro-fuzzy models: (left NF2, right NF3, and 
bottom NF4). ). Parameters and model names: Drastic DH (NN2), DRASTIC DH, Ped (NN3), DRSTIC , 
DH, Ped, LULC (NN4) 
 
 

Table 10. Spatial Distribution of Vulnerability Categories in Percentage: Selected Models. 

 
 
      
 
 
 
 
 
 
 
 
 
 
 

Vulnerability 
Categories 

Area Coverage by the Models (%) 

 NN2 NF2 NN3 NF 3  NN4 NF4 
Not classified/no data 2 0 2 0 2 1 
Low 9 8 5 3 16 2 
Moderate low 54 87 47 51 36 54 
Moderate 24 0 30 29 42 41 
High 11 5 15 16 5 2 
Total 100 100 100 100 100 100 
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4.3.2 Coincidence Reports 
 
Coincidence reports between vulnerability maps and well data were generated using GRASS raster files 
(Figures 6- 9). A total of 28 models  were created using neural networks and neuro-fuzzy methods ((14 
each). All models were compared to DRASTIC model too.  NN2 performed reasonably good in 
predicting contaminated wells – it did not perform well while classifying non-contaminated wells. NN2 
predicted 5 out of 7 contaminated wells as highly vulnerable category whereas 25 of the non-
contaminated wells were classified as in the high category. A well performing NN or NF model should 
be able to classify contaminated wells in high category and non-contaminated wells in low or 
moderately low vulnerability category. The model NN5 (DRSI) predicted 8 contaminated wells as 
highly vulnerable and 1 well each in the low and moderately low vulnerability category, respectively. 
NN7 (DRSI,DH,ped) and model NN11 predicted equal number of contaminated wells in the highly 
vulnerable category. However, all these 3 models (NN5, NN7 and NN11) over predicted non-
contaminated wells. The comparison of point data to a spatial data for accuracy assessment is not the 
ideal way. The coincidence analysis was performed to get an idea of how the models are performing in a 
relative sense. These values should not be used as absolute indicators of the suitability of models. 
Although the coincidence reports show similar trend for NF 7 and NN7, NF 5 showed drastically 
different results than NN5.  In general, NF models showed higher uncertainty than the NN models while 
predicting contaminated wells. 
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Figure 6. Coincidence report for NN models and well water quality data E Coli data 
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Figure 7. Coincidence report for NN models and non contaminated wells 
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Figure 8. Coincidence between  neuro-fuzzy models and contaminated wells (E Coli). 

 
 



 15

NefclassJ

0
5

10
15
20
25
30
35
40

dh
_p

ed
_lu

lc

dra
sti

c

dra
sti

c_
dh

dra
sti

c_
dh

_p
ed

dra
sti

c_
dh

_p
ed

_lu
lc

dra
sti

c_
lul

c
drs

i

drs
i_d

h

drs
i_d

h_
pe

d

drs
i_d

h_
pe

d_
lul

c

drs
i_l

ulc

ph
_o

m_b
d

pe
d_

dh
_b

d

pe
d_

dh
_b

d_
lul

c

Model

# 
no

n-
co

nt
am

in
at

ed
 w

e

not classified low mod low moderate high no data

 
Figure 9. Coincidence report between neuro-fuzzy models and non contaminated wells. 

 
 
 
 

5. CONCLUSION 
 
Compared to Neuro-fuzzy models, NN models performed better with contradictory data. Coincidence 
reports with well water quality data did not yield conclusive results, nor should they be used as absolute 
indicators. Although for our project integration and use of NN software with GIS was cumbersome and 
time consuming – it predicted better. With the fine-tune of the contradictory data manually could yield 
similar vulnerability maps both from NN and Neuro-fuzzy models and improve well predictions. Further 
studies needed. A larger data set of well contamination may provide better results.    
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Abstract  
 

The character of fine sediment resuspension and nutrient transport were examined for 

Newnans Lake in north-central Florida. Physical and water quality parameters were 

monitored over a period of eight months in the lake and also in the inflow and outflow 

streams. From the hydraulic point of view, this lake may be thought of as a shallow and 

wide open channel in which inflowing sediment transport is modulated by wind effects. 

Suspended sediment concentration (SSC) response to wind speed was found to occur 

over a wide frequency band, with spectral peaks that seemingly correlate with lunar 

motion. On a time-mean basis, wind kinetic energy maintains the particulate matter as a 

Benthic Suspended Sediment Layer with a mean height of about 0.80 m and SSC of 

about 70 mg L
-1

. The suspended sediment mass per unit bed area is equivalent to less 

than 1 mm thick bed layer, indicating that there is little interaction between the ~ 2 m 

thick muck in the lake and the water column. Nutrient mass balance analysis is simplified 

because dissolved nutrient loads are close or nearly equal to total loads, with minor to 

negligible contributions from the low-concentration particulate matter. Mass balances for 
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phosphorus and nitrogen indicate periods of days over which the lake acts both as a net 

exporter and a net importer of these nutrients. 

INTRODUCTION 

In recent decades several lakes in Florida have attained high trophic levels and their 

water quality has become a matter of concern to the management agencies. Such lakes 

tend to be laden with fine-grained, organic-rich muck at the bottom, which can be a 

repository as well as a source of phosphorus and nitrogen necessary for the 

eutrophication. Since these nutrients are typically derived from inflow streams, an 

important question bearing on water quality management is the role of these streams and 

sediment resuspension in the lake in governing nutrient loads in the outflow streams. In 

lakes where water throughput is steady and sufficiently high to ensure low residence 

times for water parcels and suspended matter, an assessment of water quality does not 

always require a lengthy diagnostic treatment. On the other hand, where throughput is 

high only on an episodic basis, the transport process can be complex because under 

normal conditions effects due to stream discharge and wind tend to occur at uncorrelated 

frequencies. Given that most lakes in Florida experience episodic forcing, as a paradigm 

we examined Newnans Lake in north-central Florida, with the aim to assess its sediment 

and nutrient transport regimes. A factor as well in the selection of this lake was the State 

of Florida’s plan to restore the lake’s water quality in the coming years.  

Although water quality and biological assays have been carried out in the lake, prior 

information on sediment and nutrient transport in the combined lake-and-stream system 

is sparse. Therefore, in 2004 we conducted a field campaign to obtain time-series and 

discrete sampling measurements related to factors characterizing the transport regime. 
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Data included stream discharges, wind-induced hydrodynamic parameters, suspended 

solids concentration (SSC) and concentrations of chemical species related to the nutrients 

(phosphorus and nitrogen). Observations based on these data are summarized, and an 

effort has been made to characterize the sediment and nutrient transport regimes.  

SITE AND METHOD OF ANALYSIS 

The 7 km long and 4 km wide lake in north-central Florida (Fig. 1) has a surface area 

of about 27 km
2
. The lake has up to 2 meters of muck, and portions of the littoral zone 

are densely covered by floating macrophytes that have contributed to the organic 

component of the muck. The maximum depth of water is about 3.9 m in the middle of the 

lake and the mean depth about 1.6 m. Thus the volume of muck, about 2x10
7
 m

3
, 

constitutes over one-half the lake volume above the sandy substrate beneath the muck. 

The muck is watery with a mean dry density of about 100 kg m
-3

, which corresponds to a 

solid mass of two million metric tons. At the present rate of sediment inflow, this amount 

would be equivalent to over eight centuries of sediment from the drainage basin. 

The lake drainage area covers approximately 300 km
2
 and supplies the majority of the 

runoff through two main tributaries, Hatchet Creek and Little Hatchet Creek, both at the 

northern end of the lake. A smaller stream called Bee Tree Creek confluences with 

Hatchet Creek north of its outlet at the lake. Overflow drains out of Prairie Creek at the 

southern end and empties into a large basin called Paynes Prairie. The majority of the 

lake shoreline is surrounded by a canopy of local forest trees. 

At the site shown in Fig. 1, a three-legged aluminum-frame platform schematically 

drawn in Fig. 2 was installed in December 2003, and fully operated from early January to 

early September in 2004. Transducers (Table 1) were deployed for measuring wind 
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velocity, air and water temperatures, total water pressure and pore water pressure within 

muck, horizontal and vertical current velocity components, wave-induced acceleration in 

muck, SSC in water (at three levels) and water samples (two levels).  

Data on current velocity, total water pressure, pore water pressure, and fluid (muck) 

acceleration were collected in the digital mode. Sampling was on the hour for 5 minutes 

at a bursting frequency of 10 Hz. Wind speed, air temperature, water temperature, air 

pressure and SSC data collection was in the analog mode with 2-min mean values 

recorded every one-half hour. All data were telemetered on real-time basis via a modem 

and cell-phone connection to the University of Florida for storage and analysis. 

At stations BTC, HC, LHC and PC, daily discharges were measured by the St. Johns 

River Water Management District (SJRWMD). Also measured at these stations and at 

HCW were water quality parameters. At NL daily lake water level data were recorded, 

and at GNV (Gainesville Regional Airport) daily values of atmospheric parameters were 

recorded by the airport authority (Jain et al., 2005). A description of the bottom sediment 

characteristics has been presented by Gowland et al. (2005). For the 0.4 m thick top layer 

of bottom sediment relevant to the present study the ranges of bed parameters were as 

follows: Stokes’ settling diameter of aggregated particles 26 to 38 µm, organic matter 43 

to 52% by weight, wet bulk density 1,020 to 1,050 kg m
-3

, and particle density 1,600 to 

2,100 kg m
-3

.   

The vertical profile of the bed bulk density obtained by a 76 mm diameter PVC push-

core is shown in Fig. 3. As indicated, the accelerometer and the pore pressure gauge were 

both located 0.2 m below the muck surface. This was arranged in order to determine if 

the muck heaved due to wind wave action. At that depth the (wet bulk) density was 
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approximately 1,046 kg m
-3

, which indicated that the muck had negligible (bulk) shear 

strength (Mehta, 1991).  

The erodibility characteristics of the bottom muck were determined in laboratory tests 

reported by Gowland et al. (2005). Bed erosion was modeled by the equation 

 ε ε (τ τ )
e N cw s

= −  (1) 

where εe is the erosion flux, εN is the erosion flux constant, τcw is the peak value (over the 

wave period) of the combined bed shear stress due to current and waves, and τs is the bed 

shear strength against erosion. For modeling sediment transport, a lake-mean value of εN 

= 1.0 kg m
-2

 s
-1

 Pa
-1

 was selected, and τs was determined by calibration against measured 

SSC time-series. We used the following functions to describe the settling flux εs: 

 
( )2 2

ε , ; ε ,= < = ≥
+

n

s o o s om

aC
w C C C C C

b C
 (2) 

in which C denotes SSC and Co (= 0.1 kg m
-3

) is the concentration limit below which ws 

tends to be practically free of the effect of inter-particle collisions and is assumed 

constant (w0 = 1.15x10
-4

 m s
-1

). The coefficients a, b, n, and m were taken as 0.17, 2.4, 

1.8 and 1.8, respectively.  

The shear stress τcw was determined from the method of Soulsby et al. (1993). To 

being with, the current-induced shear stress τc was determined from  

 

2

20.4
τ ρ

ln(0.033 / ) 1
c w m

s

u
h k

 
=  

− 
 (3) 

where h is the water depth, ks is the Nikuradse bed roughness, ρw is the fluid (water) 

density and um is the near-bottom current velocity. The wave-induced bed shear stress 

was calculated from 



 6 

 

2
σ

τ 0.5 ρ
2sinh

w w w

H
f

kh

 
=  

 
 (4) 

where fw is the wave friction factor, H is the wave height,σ 2 /T= π  is the wave angular 

frequency, 2 /k L= π  is the wave number, T is the wave period and L is the wavelength. 

The wave friction factor was obtained from 
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 (5a) 

where the wave-induced bottom excursion amplitude ab is given by the Airy linear wave 

theory (Dean and Dalrymple, 1991) as 

 
2sinh

b

H
a

kh
=  (5b) 

The current and wave shear stresses are superimposed using 
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where 
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I I w
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h k
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−    

 (6b) 

with analogous expressions for M and N. The quantity φ is the angle between the current 

stress vector and the wave stress vector. The coefficients ai, Mi, Ni (i = 1 to 4) and I are 

given in Table 2, as prescribed by Soulsby et al. (1993).  

The above formulation for calculating τcw requires values of h, H, T, L, um, ϕ and ks. 

For the water depth h a recent bathymetric survey was used (Jain et al., 2005). The wave 
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length L is dependent on height H and period T, and the Airy theory was used to relate 

the three, with H and T obtained from measurements.  

For determining um and ks we used the public domain numerical model 

Environmental Fluid Dynamics Code (EFDC), a three-dimensional, hydrostatic flow 

model with a compatible sub-model for sediment transport. The Cartesian coordinate 

system was used in the horizontal plane, and the vertical coordinate was stretched to 

follow the bottom contours and the free surface. In the model the finite difference method 

is used to solve the governing equations, and an external/internal mode splitting 

procedure is used to increase numerical efficiency (Hamrick, 1992; 1996; 2000; Park et 

al., 2001). As the model generated the instantaneous current velocity vectors throughout 

the lake and the wind direction was known in principle, the angle ϕ could have been 

determined. However, for simplicity of treatment, ϕ was set equal zero everywhere. 

The sediment sub-model of EFDC solves the mass balance equation for SSC. Due to 

a small numerical diffusion inherent in the scheme used to solve this equation, the 

horizontal diffusion terms are omitted. Equations (1) and (2) were used to calculate the 

erosion and deposition fluxes required as the important bottom boundary conditions for 

the sub-model.  

OBSERVATIONS 

Monthly values of the physical parameters listed in Tables 3 and 4 characterize the 

lake as one subject to moderate climatic changes. The directionally variable winds (Fig. 

4) are low-energy; the mean wind speed rarely exceeds 10 m s
-1

. High speeds in June-

September were due to the passage of Hurricanes Frances and Jeanne over northern 
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Florida in September. Current speed measured at the platform was on the order of only a 

few millimeters per second (Table 5). 

Although the monthly maximum value of the significant wave height (derived from 

water pressure data) was 0.28 m in June, typical values ranged between 0.14 and 0.16 m. 

The maximum value of the modal period was 1.4 s. Besides low wind speeds, wave 

action in the lake is limited by shallow water depths and short wind fetches. The 

maximum fetch at the platform was less than 4 km.  

It proved to be difficult to determine the precise depth of the muck surface at the 

platform because SSC changed gradually with depth, so the bed was not defined by a 

distinct interface. The effective water depth was therefore estimated by comparing the 

measured amplitudes of wave orbital current and vertical acceleration (Table 4) with the 

same quantities calculated from the Airy theory in which the water depth was adjusted 

until a match occurred. This led to a value of depth h = 2.1 m. 

In Table 3, discharge out of Prairie Creek does not correlate with rainfall because of 

the significant effect of evapotranspiration on the lake’s water budget, especially during 

the summer months (May-August). In contrast, contribution from groundwater or seepage 

is believed to be minor. Due to shallow water, significant thermoclines typically do not 

develop even as pycnoclines due to SSC and nutrients persist. Vertical gradients in SSC 

are evident from the values given in Table 5.  

The main tributary to the lake is Hatchet Creek, as Little Hatchet Creek contributes, 

on the average, only about 20% of the total inflow. However, under normal conditions 

neither discharge from Hatchet Creek nor wind is dominant as a transporting agent in the 

lake proper. As a result, the combined influence of discharge and wind on SSC is 
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manifested as a noisy signal spread over a wide frequency band. This is evident in Fig. 5, 

in which a sample of the measured SSC time-series (by OBS-2) suggests multi-frequency 

response. The running average curve represents frontal oscillations on the order of days, 

and these fluctuations are modulated by higher frequency diurnal contributions.  

Figure 6 shows wind, air temperature and SSC spectra derived from a 90-day long 

(January-March) time-series. Three noteworthy peaks are seen, and they seem to be 

related to lunar tidal harmonics. These are the lunar quarter-phase period of 6.8 solar 

days, its second harmonic of 3.4 d and the lunar diurnal period of 1.08 d. A fourth peak 

corresponding to about 0.5 d could be the luni-solar semi-diurnal period (11.97 hr). Sea 

breeze is known to respond to tidal effects (Richards, 2003), and is the seeming 

explanation for the coincidence of the frequencies with lunar motion. Nonetheless, the 

occurrence of this effect is somewhat surprising because the lake is approximately 100 

km from the Atlantic coast, a substantial distance. A further study of meteorological 

forcing is essential before a definitive conclusion can be reached as to the interpretation 

of the observed spectral peaks. 

From Tables 3 and 4 we observe that monthly mean wind speeds range between 2.5 

and 4.1 m s
-1

, and monthly peak winds between 8.9 and 12.6 m s
-1

. The generally low 

mean and peak speeds point to a practically “eventless” period of eight months. 

Similarly, the Prairie Creek discharge range of 0.21 to 1.24 m
3
 s

-1
 indicates consistently 

low throughput over the same period. Higher wind speeds in September accompanying 

the hurricanes also brought higher rainfall and creek discharges. On September 9, 

following the nearest passage of Frances on September 4, discharge in Prairie Creek rose 

to 22 m
3
 s

-1
. Then, on September 30, following Jeanne on September 25, the discharge 
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further increased to 27 m
3
 s

-1
. 2-min mean gusts attained maximum values of 20 m s

-1
 

during Frances and 15 m s
-1

 during Jeanne. It should be pointed out, however, that in the 

recent past hurricanes have seldom led to high discharges coupled with high winds in this 

region of Florida. More common occurrences are those of high discharge without high 

wind, as during the El Niño event of February 1998 when the peak discharge in Prairie 

Creek was 17 m
3
 s

-1
.  

Wave related parameters showed a weak but identifiable dependence on wind speed. 

A typical set of data is from the month of February. In Fig. 7 the significant wave height 

is seen to increase with wind speed at a nearly linear rate. The cutoff line at 2 m s
-1

 

corresponds to the limit of sensitivity of the wave pressure gage. In Fig. 8 the wave 

modal period is also seen to increase with wind speed, albeit in a non-linear way. In Fig. 

9, plots of the horizontal and vertical wave velocity amplitudes are given. These 

amplitudes are consistent with the wave height (Fig. 7) and period (Fig. 8) data. 

To help interpret the relationship between SSC (C) and wind speed (U), each was 

represented by the sum of a low-frequency component (marked by an overbar) associated 

with frontal wind events and a higher frequency component (with a hat) associated with 

daily (diurnal) events: 

 ˆˆ ;U U U C C C= + = +  (7) 

In Figs. 10a,b data from OBS-2 have been plotted. The C  values show a weak yet 

recognizable linear dependence on U ( C aU b= + ). In Fig. 10b, Ĉ shows little 

dependence on ˆ .U  Nevertheless, for the convenience of data interpretation, one may 

postulate the occurrence of a linear relationship of the form ˆ ˆˆC aU= . Values included 

correspond to times when Û and Ĉ  were increasing together, i.e., when both quantities 
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had positive slopes. Data at times when either (or both) slope of a ˆˆ ,U C  pair was negative 

had to be discarded in order to avoid even more excessive data scatter than observed. A 

likely reason for this lack of response of Ĉ  to Û  may be that the ratio of the wave period 

(~ 1 s) to the sediment settling time lag (~10
-4

 m s
-1

) was on the order of 10
-4

, a very 

small value. As a result, and coupled with a directionally variable wind-wave field which 

complicated the role of waves, discrete oscillations in SSC induced by settling and 

entrainment could not be clearly gleaned from the data.  

Taking U = 4 m s
-1

 and Û = 0.5 m s
-1

 as representative values we obtain ˆ /C C = 

0.4/16.5 = 0.02. In Table 6 this ratio is calculated for the three OBSs. Also given are the 

coefficients ,a b and â . To enhance the generality of the observations, results are 

included from February (representing the winter climate) as well as May (representing 

summer), when unfortunately only two of the three sensors were operating. Overall, the 

ˆ /C C ratio ranges from 0.02 to 0.11, indicating that diurnal variations modulate the 

frontal amplitudes by a factor of 2% to 11%. In other words, daily winds seem to play a 

lesser role compared to “weekly” wind events in resuspending sediment.  

In Fig. 11, the suspended sediment load S is plotted against discharge Q for Prairie 

Creek. The mean trend is seen to be linear, which implies a constant SSC (C = 16 mg L
-

1
), because by definition S = CQ. These data are based on samples collected at mid-depth 

in the creek, and in terms of elevation they are compatible with data recorded by OBS-2 

in the lake. Data from Hatchet and Little Hatchet Creek also indicated similar trends, with 

mean concentrations given below.  

Hatchet (+ Bee Tree) Creek 8 mg L
-1

 

Little Hatchet Creek 11 mg L
-1

 

Prairie Creek 16 mg L
-1
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Constant SSC in the creeks implies that sediment transport in these streams is supply-

limited. The inflow creek beds appear to consist of sediment that does not erode even at 

high discharges, a characteristic of channels in clear-water equilibrium. In Prairie Creek, 

SSC is limited by supply from the lake. 

FLOW FIELD AND SEDIMENT TRANSPORT    

For simulation of the flow field and sediment transport using the EFDC model, the 

Cartesian grid for the lake was composed of 1078 computational cells. The horizontal 

dimension of each cell was 150 m (N-S) by 100 m (E-W). Three stretched horizontal 

layers were used to represent the water column. At the lake boundary cells representing 

the three creeks, measured discharge time-series were supplied. Also inputted into the 

model were time-series of wind, precipitation and evapotranspiration. The wave height 

and period fields required for bed shear stress calculation were estimated from 

relationships with wind speed of the type shown in Figs. 7 and 8, respectively. At the cell 

containing the water level gauge (NL in Fig. 1), the measured time-series was compared 

with simulation. The hot-start calibration period was from day 5 to 54, and the best 

agreement was obtained using a bed roughness parameter ks = 0.01 m. Validation covered 

the period from day 60 to 110. 

A comparison between measured and simulated water levels in the lake in Fig. 12 

during validation shows a reasonable agreement, with a maximum difference of about 

0.08 m before day 99 and about -0.02 m afterwards. During the 50-day period the 

simulated water volume out of Prairie Creek was 7.62x10
6
 m

3
, which differed from the 

measured value (7.73x10
6
 m

3
) by less than 2%. 
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Figure 13 shows the simulated surface velocity vectors in the lake for a selected 

southwesterly wind of 7 m s
-1

 and a steady outflow of 1.3 m
3 

s
-1

 out of Prairie Creek in 

February 2004. Due to the throughput from the inflow creeks towards Prairie Creek, the 

vectors point southward, with the exception of littoral circulation gyres generated by 

local boundary geometry. The velocities were everywhere below 0.03 m s
-1

. It is also 

noteworthy that in the southern part of the lake the flow is channelized through a 

seemingly narrow neck. A similar simulation without wind produced lower velocities, 

which fell by about 40% in the neck area.  

The fine sediment transport sub-model in EFDC was calibrated by adjusting the 

erosion shear strength τs (= 0.035 Pa) to achieve agreement between measured and 

simulated time-mean SSC values at the platform. Figure 14 shows the comparison over a 

10-day period in February for OBS-1 and OBS-3. The OBS-2 data were intermediate 

between these two and are not plotted. While a reasonable agreement for the 10-day 

mean values is achieved (Table 7), measured SSC is seen to be substantially less time-

dependent than the simulated values. For example, whereas at OBS-3 the measured mean 

amplitude of this variation (about the time-mean value) is about 50 mg L
-1

, the 

corresponding value for the simulated SSC is about 5 mg L
-1

 in agreement with Fig. 10a. 

As described next, this order of magnitude difference between simulated and measured 

amplitudes of SSC requires invocation of a hydraulic open channel analogy of the lake-

and-streams system. 

LAKE REGIME 

Newnans Lake can be viewed as the wide segment of a narrow water course or 

channel. The up-lake reach of the channel is a notional water course combining Hatchet 
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Creek and Little Hatchet Creek. Prairie Creek is the down-lake reach of the same 

channel. Within the lake the speed of the channel current is reduced substantially, while 

at the same time wind generates waves and a very weak circulation. The combined 

strength of the current and circulation is only a few millimeters per second. 

Suspended sediment is present in the lake at all times, with a representative SSC 

profile shown in Fig. 15. The SSC gradient, called a secondary lutocline (Ross and 

Mehta, 1989), defines what may be referred to as a Benthic Suspended Sediment Layer 

(BSSL) beneath the gradient. The lower level of this weakly non-Newtonian layer is the 

primary lutocline characterized by hindered settling below this lower lutocline. For the 

present analysis we may conveniently chose the muck-water surface to represent the 

lower bound of the BSSL. The BSSL shown does not have a well defined height but it 

can be taken as 0.80 m based on the “equal area” assumption, which idealizes the water 

column as composed of a distinct BSSL beneath sediment-free water. This value is a 

representative mean for the entire period of measurement, with a range of about 0.2 to 1 

m. 

The thickness of the bottom sediment layer that must be entrained to generate the 

0.80 m high BSSL with a mean SSC of about 70 mg L
-1

 (Fig. 15) can be estimated. 

Taking 100 kg m
-3

 as the dry density of the bed, this thickness is equal to (0.07/100)x0.80 

= 0.00056 m = 0.56 mm, which indicates that only a very thin layer of the bed 

participates in the sediment entrainment process. This finding in turn implies that there is 

little interaction between the ~ 2 m thick muck in the lake and the water column, because 

even a BSSL with an unlikely high concentration of, say, 700 kg L
-1

 would correspond to 

a less than 10 mm thick bed layer. 
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The persistence of a “constant” BSSL in the lake may be explained on a time-mean 

basis in terms of the wind kinetic energy required to raise the potential energy of a layer 

of suspension to the height of the BSSL. Quite simply, wind energy is expended in 

expanding a 0.56 mm thick bottom layer with a dry density of 100 kg m
-3

 to a 0.80 m 

high BSSL with SSC of 70 mg L
-1

. To provide a mechanistic explanation of this 

phenomenon, Vinzon and Mehta (1998) used the steady state form of the turbulent 

kinetic energy balance to obtain the equilibrium height He of the BSSL as a function of 

wave properties. The semi-theoretical equation was shown to be 

 

1/ 4

3 3/ 2

3

( )
0.65

ρ ρ
φ

ρ

b s
e

s w
o v

w

a k
H

T gw

 
 
 =

− 
 
 

 (8) 

where ρs is the particle density, g is the acceleration due to gravity and ϕv =C/ ρs is the 

mean volumetric concentration of the suspended solids.  

For estimating He using Eq. (8) we will choose the following nominal values: ab = 

0.015 m based on Eq. (5b) with H = 0.07 m, T = 1.4 s and h = 1.6 m, ks = 0.1 m (instead 

of the secular value of 0.01 m, in order to account for local bottom variability), ρs = 1,700 

kg m
-3

, ρw = 1,000 kg m
-3

, wo = 1.15x10
-4

 m s
-1

, and ϕv = 70/(1700x1000) = 0.041 x10
-3

. 

This yields He = 0.68 m, which is within the measured range. 

An important basis of Eq. (8) is that it does not embody the concept of a threshold for 

resuspension (in terms of the bed shear strength τs). To account for the presence of 

suspended sediment in the lake water column at low discharges ( ≤ 1 m
3
 s

-1
) and wind 

speeds ( ≤ 2 m s
-1

), it would be necessary to reduce the shear strength to less than 0.002 

Pa, the combined current-wave shear stress under these conditions. Such low shear 
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strength implies that the sediment in suspension under these conditions consists mostly of 

organic material with density close to water. At high discharges and wind speeds one can 

expect heavier particles to be brought into suspension. If so, the composition of sediment 

leaving Prairie Creek must vary with the hydraulic conditions in the lake, and that, in 

general, the material would be finer than that at the lake bottom. Qualitative observations 

of sediment in suspension appear to be consistent with this inference. 

To entrain organic matter at very low discharges and wind speeds must require a 

hydrodynamic forcing mechanism at the bottom. Conceivably it is provided by a relative 

motion between water and the bottom sediment layer susceptible to movement. Evidence 

for such likelihood is found in Fig. 16, in which the vertical amplitude of the fluid (muck) 

acceleration recorded 0.2 m below the muck surface is plotted against wind speed. As the 

accelerometer data showed numerous discrepancies, only a limited number of data points 

are included. Despite this limitation, we observe a clear trend of increasing amplitude 

with wind speed, with 3.2 m s
-1

 as a threshold wind speed marking the onset of muck 

heave. Heave would suggest a relative motion at the muck surface and associated shear 

stress that would be absent over a hard bed. In laboratory wave-flume experiments Maa 

and Mehta (1987) observed interfacial waves at the soft mud surface, and estimated the 

contribution to bed shear stress from the relative motion between the mud surface and the 

boundary layer in water. They found that this contribution can be a significant fraction of 

the bed shear stress estimated from hard bed analysis. 

Pore pressure data given in Table 5 corroborate muck movement recorded by the 

accelerometer. Unfortunately, pore pressure values showed substantial scatter, with little 

likelihood of obtaining a reliable correlation with wind speed (Jain et al., 2005).   
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NUTRIENT LOADS 

Nutrient data collected at the platform included concentrations of dissolved organic 

nitrogen, dissolved organic phosphorus, nitrate-nitrite, ammonia, particulate nitrogen, 

particulate phosphorus, soluble reactive phosphorus, total dissolved nitrogen, total 

dissolved phosphorus, total Kjeldahl nitrogen and total phosphorus. None of these 

species, which were obtained during six sets of data collection over the study period, 

showed any dependence on the wind speed. This was so, in part, because water sampling 

using the auto-samplers was carried out at 1 to 3 hour intervals over 24 to 72 hr periods. 

Diurnal variation in nutrient concentrations was apparently too weak to be detected 

during these periods. At the same time, the sampling duration was insufficiently long for 

identifying frontal oscillations in concentrations. 

Nutrient concentrations were also measured daily by SJRWMD in the streams and the 

lake (at mid-depth) over different periods: Hatchet Creek and Bee Tree Creek during 

2003-2004, Little Hatchet Creek during 1998-2004, Prairie Creek during and 1997-2004 

and Newnans Lake in 2004. These synoptic data are evidently important for assessing a 

nutrient budget for the lake. A plot of the dissolved and total load of total Kjeldahl 

nitrogen (TKN) against discharge, which is typical of all the species and all the stations, 

is shown in Fig. 17 for Hatchet Creek. There is little evidence of any significant 

contribution from the particulate load, presumably because of low SSC in the system as a 

whole. The same conclusion can be drawn for all the species (Jain et al., 2005). As in Fig. 

11, linear data fit implies a constant TKN concentration. Thus, given the discharge time-

series for the inflows and outflow and assuming a linear relationship between the load 

and discharge, it was straightforward to calculate the cumulative mass of TKN over any 
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desired period, and thereby establish a mass balance for the lake. Similar analysis for 

carried out for all other species (Jain et al., 2005). 

In Table 8, besides TKN we have calculated masses of total phosphorus (TP) and 

dissolved phosphorus (DP), ammonia (NH4) and nitrate-nitrite (NOx) for the 10-day 

“non-event” calibration period in February. The results are given in terms of cumulative 

inflow mass mI, cumulative outflow mass mO (Fig. 18), the difference mI-mO and the ratio 

(mI-mO)/mI. Judging from the last two quantities we conclude that TP and DP were in 

near balance, but TKN, NH4 and NOx were exported from the lake. Since an 

insignificantly thin bottom sediment layer exchanges material with the water column, it 

appears that over the 10-day period the lake supplied nitrogen from sources not 

accounted for by the two inflow creeks or the lake bottom.  The most likely source is the 

accumulated nitrogen in the lake water itself, presumably coupled with diffusion from 

bottom sediment and the effects of bioturbation. 

In Table 9 we have presented calculations for the 7-day hurricane period in 

September. Due to high discharges the cumulative masses are up to two orders of 

magnitude higher than in February. However, at the end of this event, with the exception 

of TKN, supply from the inflow creeks exceeded outflow from Prairie Creek. In other 

words, the lake sequestered incoming nutrients represented by mI-mO.     

CONCLUDING COMMENTS 

From the hydraulic point of view, Newnans Lake may be thought of as a shallow and 

wide open channel in which transport of sediment from the creeks is modulated by wind 

effects in the lake. Light weight, organic-rich fine sediment particles dominate the 
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suspended matter, and SSC response to wind occurs over a wide frequency band whose 

range is determined by the combined forcing due to wind effects and stream discharges.  

On a time-mean basis, wind kinetic energy maintains sediment as a Benthic 

Suspended Sediment Layer with a mean height of about 0.80 m and a mean SSC of about 

70 mg L
-1

. The sediment mass in this suspension is equivalent to less than 1 mm thick 

bed layer, which suggests that there is little interaction between the ~ 2 m thick muck in 

the lake and the water column. 

Nutrient mass balance analysis is simplified because dissolved nutrient loads are 

close or nearly equal to total loads, with minor to negligible contributions from the low-

concentration particulate matter. Mass balances for phosphorus and nitrogen indicate 

periods on the order of days over which the lake acts both as a net exporter and a net 

importer of these nutrients. 
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Table 1 Instruments deployed at the platform 

Property Instrument make Model no. 

Freq. of bursting 

(Hz) 

Wind RM Young anemometer 05103 - 

Air temperature Analog Devices gauge AC 2626 - 

Water temperature  Analog Devices gauge AC 2626 - 

Current  Sontek acoustic current meter Field ADV  10 

Air pressure Trans-metrics gauge B020  - 

Total (H20) press.  Trans-metrics gauge P215L  10 

Pore (H20) press.  Druck gauge PDCR-81 10 

TSS Sea Point sensors (OBS) - 10 

Fluid acceleration Analog Devices accelerometer ADXL 202 10 

Data logging Campbell Scientific logger CR23X - 

Light Carmanah light 501 - 

Data transmission  Airlink Comm. modem Redwing CDMA   - 

 

Table 2 Coefficients for stress calculation 

Coefficient Value 

a1 -0.06 

a2 1.70 

a3 -0.29 

a4 0.29 

M1 0.67 

M 2 -0.29 

M 3 0.09 

M 4 0.42 

N1 0.75 

N2 -0.27 

N3 0.11 

N4 -0.02 

I 0.80 

 

Table 3 Lake physical parameters 

Month 

Water 

temperature 

(
o
C) 

Rainfall 

(mm) 

Mean wind 

speed 
a
 

(m s
-1

) 

Maximum 

wind speed 
b
 

(m s
-1

) 

Prairie Cr. 

discharge 

(m
3
 s

-1
) 

January 16.9 1.3 3.2 10.3 0.64 

February 17.5 4.9 4.1 11.4 0.89 

March 22.0 1.6 3.7 9.4 1.24 

April 24.4 1.0 3.7 12.6 0.92 

May 29.3 0.4 3.3 11.1 0.50 

June 31.0 5.2 2.6 12.9 0.26 

July 32.6 3.2 2.5 8.9 0.21 

August 31.9 75.0 3.0 10.5 0.42 
a
 Monthly average of ½-hourly (2-min mean) values. 

b
 Peak value in a month. 
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Table 4 Wave parameters at the platform 

Month 

Maximum 

wave 

height 
a
 

(m) 

Maximum 

modal wave 

period 
b
 

(s) 

Max. horz. 

wave orbital 

current ampl. 

(m s
-1

) 

Max. vert. 

wave orbital 

current ampl. 

(m s
-1

) 

Max. vert. wave 

orbital acc. 

ampl. 

(m s
-2

) 

January 0.14 1.2 0.17 0.13 0.45 

February 0.14 1.3 0.18 0.13 0.41 

March 0.16 1.3 0.20 0.13 1.71 

April 0.16 1.4 0.20 0.12 1.58 

May 0.14 1.3 0.20 0.15 0.4 

June 0.28 1.2 0.47 0.39 0.41 

July 0.16 1.2 0.21 0.14 - 

August 0.18 1.3 0.23 0.16 2.37 
a 
Significant wave height is defined as four times the root-mean-square of surface elevation. 

b
 Modal wave period is defined as the period corresponding to the frequency at the wave spectral peak. 

 

Table 5 Current, SSC and pore pressure at the platform 

Month 

Mean 

current 

(mm s
-1

) 

SSC-1
a
 

(mg L
-1

) 

SSC-2
b
 

(mg L
-1

) 

SSC-3
c
 

(mg L
-1

) 

Depth-mean 

SSC 

(mg L
-1

) 

Maximum 

muck pore 

pressure 

 (kPa) 

January 2.6 7.1 20 176 68 50 

February 4.2 8.8 17 155 60 95 

March 2.8 12.4 39 254 102 140 

April 3.3 12.0 46 239 99 158 

May 1.4 9.6 52 230 97 268 

June 2.5 8.8 110 119 79 326 

July 2.8 6.1 111 116 78 - 

August 0.3 3.4 117 - - 281 
a
 OBS-1 elevation 1.8 m above bed; 

b
 OBS-2 1.4 m; 

c
 OBS-3 1.1 m.  

 

Table 6 SSC characteristics related to wind speed 

C  Ĉ  
Month 

OBS elev.
a
 

(m) a  b  
@ 4 m s

-1
 

(mg L
-1

) 
â  

@ 0.5 m s
-1

 

(mg L
-1

) 

ˆ /C C  

1.8 0.31 7.0 8.2 0.67 0.3 0.04 

1.4 0.25 15.5 16.5 0.77 0.4 0.02 February 

1.1 0.08 148 162 36.3 18.1 0.11 

1.8 0.16 8.8 9.4 2.0 1.0 0.11 
May 

1.1 8.2 193 226 10.7 5.4 0.02 
a
 With respect to bed surface. 
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Table 7 Measured and simulated time-mean SSC at the platform  

SSC 
OBS Measured 

(mg L
-1

)  
Simulated 
(mg L

-1
) 

Error 
(%) 

1  8 7 -13 
2  16 20 +25 
3  150 113 -25 

 

Table 8 Cumulative nutrient masses during the 10-day non-event period 

Species 
Inflow (mI)  

(t) 

Outflow (mO)  

(t) 

Diff. (mI-mO) 

(t) 
(mI-mO)/mI 

TP 0.05 0.11 -0.06 -1.2 

DP 0.05 0.03 +0.02 +0.4 

TKN 0.47 1.76 -1.29 -2.7 

NH4 0.02 0.19 -0.17 -8.5 

NOx 0.02 0.09 -0.07 -3.5 

 

Table 9 Cumulative nutrient masses during the 7-day hurricane period 

Species 
Inflow (mI)  

(t) 

Outflow (mO)  

(t) 

Diff. (mI-mO) 

(t) 
(mI-mO)/mI 

TP 2.6 0.8 -1.8 -0.7 

DP 2.6 0.2 -2.4 -0.9 

TKN 30.5 13.9 +16.6 +0.5 

NH4 1.19 1.49 -0.3 -0.3 

NOx 0.45 0.75 -0.3 -0.7 
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Figure 1 Newnans Lake and watershed in north-central Florida. 
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Figure 2 Field platform and instrumentation. 

 

 

 

 

 

 

 

 

Figure 3 Bottom muck density profile at the platform site. 
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Figure 4 Wind roses for January-May and June-September 2004. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Sample time-series of variation of SSC measured by OBS-2. 
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Figure 6 Wind, air temperature and SSC spectra. 

 

 

 

 

 

 

 

 

Figure 7 Variation of significant wave height with wind speed. 
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Figure 8 Variation of wave modal period with wind speed. 

 

 

 

 

 

 

 

 

 

Figure 9 Variation of wave orbital velocity amplitudes with wind speed. 
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Figure 10a Variation of frontal SSC (C ) with frontal wind speed (U ) at OBS-2. 

 

 

 

 

 

 

 

 

 

Figure 10b Variation of diurnal SSC ( Ĉ ) with diurnal wind speed (Û ) at OBS-2. 
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Figure 11 Variation of SSC load with discharge in Prairie Creek. 

 

 

 

 

 

 

 

 

 

Figure 12 Comparison of measured and simulated water levels in the lake. 
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Figure 13 Simulated surface velocity vectors. Selected depth contours are shown. 

 

 

 

 

 

 

 

 

Figure 14 Measured and simulated SSC time-series for OBS-1 and OBS-3. 
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Figure 15 Typical SSC profile and estimation of BSSL height. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Vertical acceleration in mud versus wind speed during February, March and 

May. 
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Figure 17 Total load of TKN versus discharge in Hatchet Creek. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18  Inflow and outflow nutrient masses. 
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Space-based monitoring of wetland surface flow

Basic Information

Title: Space-based monitoring of wetland surface flow

Project Number: 2004FL76G

Start Date: 9/1/2004

End Date: 8/31/2007

Funding Source: 104G

Congressional District: 18

Research Category: Not Applicable

Focus Category: Wetlands, Surface Water, Hydrology

Descriptors:

Principal Investigators: Shimon Wdowinski

Publication
1.  Wdowinski, S., F. Amelung, T. Dixon, F. Miralles-Wilhelm, and R. Sonenshein, Space-based

detection of surface water level changes in South Florida, submitted to Remote Sensing for
Environment, 2005. 

2.  Wdowinski, S., F. Amelung, F. Miralles-Wilhelm, T. Dixon, and R. Carande, Space-based hydrology
of the Everglades wetland, South Florida, First National Conference on Ecosystem restoration,
Abstract Volume, p. 466, 2004. 44. 

3.  Wdowinski, S., F. Amelung, and T. Dixon, Towards operational monitoring of wetland water levels
using InSAR: Applications for the Everglades Restoration Project, Eos Trans. AGU, 85(47), Fall
Meet. Suppl., Abstract H23E-1169, 2004. 

4.  Wdowinski, S., F. Amelung and T. Dixon, S. Kim, B. Osmanoglu, M. Kartal, D. Harding, The
Everglades wetlands as a laboratory for testing and calibrating the CRYOSAT hydrological
applications. 

5.  Osmanoglu, M., D. Kartal, S. Wdowinski and T. Dixon, Altitude accuracy improvement by using a
new radar altimeter simulator for ENVISAT data, 1st CRYOSAT meeting, 2005. 

6.  Kim, S., S. Wdowinski, F. Amelung, and T. Dixon, C-Band Interferometric SAR Measurements of
Water Level Change in the Wetlands: Examples from Florida and Louisiana, IGARSS meeting
proceedings, 2005. 

7.  Wdowinski, S., F. Amelung, and T. Dixon, Space-Based hydrology of the Everglades Wetlands,
South Florida, Society of Wetland Scientists, 26th Annual Meeting, Final program and abstracts, 125,
2005. 

8.  Wdowinski, S., F. Amelung, T. Dixon, S. Kim, B. Osmanoglu, M. Kartal, and D. Harding, The
Everglades wetlands as a laboratory for testing and calibrating space-geodetic hydrological



technologies, Eos Trans. AGU, 86(18), Fall Meet. Suppl., Abstract G23A-04, 2005. 
9.  Kim, S., S. Wdowinski, F. Amelung and T. Dixon, Wetlands Application of Interferometric SAR

Measurements: examples from Florida and Louisiana, Eos Trans. AGU, 86(18), Fall Meet. Suppl.,
Abstract G23A-03, 2005. 

10.  Bieler, B.M, R. Garcia-Martinez, F. Miralles-Wilhelm, and S. Wdowinski, Modeling Water Flow in
the Everglades Wetlands Using Interferometric Synthetic Aperture Radar (InSAR)Observations, Eos
Trans. AGU, 86(18), Fall Meet. Suppl., Abstract G23A-05, 2005. 

11.  Kim, S, A. Ferretti, F. Novali, S. Wdowinski, F. Amelung, T.H. Dixon, R.K. Dokka, and B. Rabus,
Observation of Subsidence in New Orleans Using Permanent Scatterers, Eos Trans. AGU, 86(18), Fall
Meet. Suppl., Abstract G43A-04, 2005.



 

Progress Report 

Space-based monitoring of wetland surface flow 

PI: Dr. Shimon Wdowinski 

Division of Marine Geology and Geophysics, Rosenstiel School of Marine and 
Atmospheric Science, University of Miami 

 

Progress has been obtained in the following four categories: 

 

1. Data acquisition 
We continue acquiring C-band SAR data, mainly over the Everglades wetlands, but also 
over other wetlands. Our main source of data for Everglades is RADARSAT-1, which 
has a repeat orbit of 24 days. Using our Alaska SAR Facility (ASF) data project, we set 
6 Data Acquisition Requests (DAR) that automatically acquire every repeat orbit. As a 
result, we get 6 new acquisitions within every 24 days, half using fine beam (7 m pixel 
resolution) and the other half with standard beam (15 m resolution). Due to a new 
agreement between ASF and CSTARS (University of Miami), since October we 
downlink the new acquisitions at CSTARS at no cost! So, we are getting high quality 
data at no cost and in real time. 

We also continue ordering and obtaining ENVISAT data using our ESA CAT-1 data 
projects. We collect ENVISAT data over the Everglades, Louisiana coastal wetlands, 
Chesapeake Bay, Pantanal (Brazil), and Mauritania, and Okavango Delta (Botswana). 
The ENVISAT repeat orbit is 35 days, which found to be problematic in some cases. 
Nevertheless, we continue collecting the data and evaluating its importance. 

 

2. Data processing and results 

We have continued processing both archive and current data. We completed processing 
the archived L-band JERS-1 data of south Florida. The data covers the time span of 
1993-1996 and shows very interesting features. The results of this study are summarized 
in a manuscript that was submitted to RSE and is currently in the review process. We 
processed some of the archived C-band ERS-1/2 data of the Everglades. However, we 
still need to re-process this data set with our improved processing scheme. We also 
process the current C-band data of the Everglades and other wetlands. Some preliminary 
results of these processing were presented at the ESA (European Space Agency) 
sponsored Fringe meting in November 2005. We also presented at that meeting a 
comprehensive analysis of the Everglades data, using all data type (JERS-1, ERS-1/2, 
ENVISAT, and RADARSAT-1). This study is in an advanced stage and will be 
submitted soon for publication. 

 

3. Flow models 
Our systematic analysis of all available data has shown that the fine beam (7 m pixel 
resolution) RADARSAT-1 (C-band) data produce best results. Therefore we routinely 



obtain such data using our ASF data project (see section 1). For some of the orbit we 
collected already a year-long data, with 24 day time span between acquisitions. Routine 
processing of the data enables us to produce interferogram time-series showing water 
level changes in some sections of the Everglades. One of our focus area is Water 
Conservation Area 1 (WCA-1), which its unique hydrological conditions generate very 
interesting fringe patterns. This series of interferograms are now being used by a MS 
student, B.M. Bieler, to constrain a high spatial-resolution flow model of WCA-1, using 
a Finite Element technique. The model equations are solved using an explicit finite 
element scheme that facilitates parallelization and incorporation of adaptive methods, 
and is well suited for short term simulations. In order to construct the model’s geometry, 
we use a dynamic mesh generator, which can produce variable resolution meshes. Such 
meshes are considered essential to obtain the required spatial resolution in the highly 
variable environment of the Everglades. Preliminary modeling results show very good 
fit to some of the observations, but not all. The model needs further improvements, 
which will be conducted in the next few months. 



Information Transfer Program
During FY 2005, the Florida WRRC actively promoted the transfer of the results of water-resources
research to water-resource groups in Florida. The target audience was the scientific and technical
community who address Floridas water problems on a professional basis. Specific activities that were part
of this task included maintaining an updated mailing list with email addresses and a web-based home
page. The email list and home page were used to provide timely information about research proposal
deadlines, conference announcements and calls for papers, and other water-related activities. The home
page describes ongoing research at the WRRC and lists research reports and publications that are
available. Also, the home page is used to list research reports and publications that are available through
the WRRC and elsewhere, and it provides links to other water-resource organizations and agencies,
including the five water management districts in Florida and the USGS. The WRRC continues to maintain
a library of technical reports that have been published in past years by the WRRC. Copies of these reports
can be checked out by researchers. Also, copies of reports are distributed upon request with a nominal
charge make to cover the cost of reproduction and mailing. As newer reports become available, electronic
versions of these reports will be made available for distribution by downloading from the WRRC home
page. Financial support was provided for publishing research results in refereed scientific and technical
journals and conference proceedings. 



Information Transfer

Basic Information

Title: Information Transfer

Project Number: 2005FL99B

Start Date: 3/1/2005

End Date: 2/28/2006

Funding Source: 104B

Congressional District: 6th

Research Category: Not Applicable

Focus Category: None, None, None

Descriptors:

Principal Investigators: Kirk Hatfield, Mark Newman

Publication
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measures of water and Cr(VI) fluxes by passive flux meter. Environmental Science and Technology.
2006, (In Review). 

3.  Klammler, H K. Hatfield, M. Annable, E. Agyei, B. Parker, J. Cherry, and P.S.C. Rao. General
analytical treatment of the flow field relevant for passive fluxmeter interpretation. Water Resour. Res.
2005, (In review). 

4.  Bhat, S., K. Hatfield, J. M. Jacobs, R. R. Lowrance, R. G. Williams, and K. R. Reddy. Prediction of
Nitrogen Leaching from Freshly Fallen Leaves: Application of the Riparian Ecosystem Management
Model (ReMM), Journal of Hydrology. 2005, (In Review). 

5.  Brown, C. J., and S. Sutterfield, J. R., Hendel, P. J. Kwiatkowsiki, J. Mirecki, K. Hatfield. The
Comprehensive everglades restoration program ASR pilot projects: Plan development, J. Water
Resour. Planning and Management. 2005, (In review). 

6.  Bhat, S., J. M. Jacobs, K. Hatfield, and W. Graham. Hydrologic indices of watershed scale military
impacts of Fort Benning, Ga. Journal of Hydrology. 2004, (In Review). 

7.  Mohamed, M K. Hatfield, and A. E. Hassan. Monte Carlo evaluation of contaminant biodegradation
in heterogeneous aquifers, Advances in Water Resources. 2005, (In Press). 

8.  Sedighi, A., H. Klammler, C. Brown, and K. Hatfield. A semi-analytical model for predicting water
quality from an aquifer storage recovery system, Journal of Hydrology. 2005, (In Press). 

9.  Perminova, I.V., A.N. Kovalenko, P. Schmitt-Kopplin, K. Hatfield, N. Hertkorn, E.Y. Belyaeva, V.S.
Petrosyan. Design of quinoid-enriched humic materials with enhanced redox properties,



Environmental Science and Technology. 39 (2), 2005, 8518-8524. 
10.  Bhat, S., J. M. Jacobs, K. Hatfield, and J. Prenger. Relationships between Water Chemistry and Land

Use in Military Affected Watersheds in Fort Benning, Georgia, Ecological Indicators, 6(2), 2006,
458-466. 

11.  Agyei, E. and K. Hatfield. Enhancing gradient-based parameter estimation with an evolutionary
approach. Journal of Hydrology. 316 (1-4), 2005, 266-280. 

12.  Newman, M., K. Hatfield, J. Hayworth, P.S.C. Rao, and T. Stauffer. A hybrid method for inverse
characterization of subsurface contaminant flux, Journal of Contaminant Hydrology, 81(1-4), 2005, 34-62. 

13.  Mohamed, M and K. Hatfield. 2005. Modeling Microbial-mediated reduction in batch reactors,
Chemosphere, 59(8), 1207-1217. 

14.  Clark, C.J., K. Hatfield, M. D. Annable, P. Gupta, and T. Chirenje. 2005, Estimation of arsenic
contamination in groundwater by the passive flux meters, Journal of Environmental Forensics, Vol 6,
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Student Support
Student Support

Category Section 104
Base Grant

Section 104
NCGP Award

NIWR-USGS 
Internship

Supplemental 
Awards Total

Undergraduate 1 0 0 0 1 

Masters 4 0 0 0 4 

Ph.D. 4 0 0 0 4 

Post-Doc. 3 0 0 0 3 

Total 12 0 0 0 12 

Notable Awards and Achievements
For the upcoming year (FY 2006) the Florida Water Resources Research Center has been restructured with
the goal of maximizing the amount of graduate student funding available to the state of Florida under the
provisions of section 104 of the Water Resources Research Act of 1984 (Public Law 98-242). Agreements
have been established with three of Floridas Universities (Florida State University, University of South
Florida, and the University of Florida) and four state agencies (South Florida Water Management District,
Southwest Florida Water Management District, St. Johns River Water Management District, and the
Florida Geological Survey) that will support the work of 10 Ph.D. students for FY2006. These agreements
will be funded with support from the United States Geological Survey ($92,335) along with matching
funds from the collaborating universities and state agencies ($220,481) to provide $312,816 in total
support for water resources related research in FY2006. 

The supported research projects will consider a wide range of water resource related issues while
maintaining focus on topics specific to Florida. These topics include investigating the geochemical
processes that control the mobilization of arsenic during aquifer storage recovery (ASR), comparing
widely used procedures by which radar- and gauge-derived rainfall are optimally combined for water
management and regulatory decisions, investigating the measurement of evapotranspiration, recharge, and
runoff in shallow water table environments characteristic of the Gulf of Mexico coastal plain, studying the
measurement of erosion around and flow through hydraulic structures and culverts, and developing
software for quantifying the impacts of saltwater up-coning and well field pumping. 

The Florida Water Resources Research Center has also provided support for continued development of
innovative methods for measuring the movement or flux of groundwater and groundwater contaminants
using a recently patented passive flux meter. Portions of this research were funded by the Natural and
Accelerated Bioremediation Research (NABR) program, Biological and Environmental Research (BER),
U.S. Department of Energy, the FloridaWater Resources Center under a grant from the U.S. Department
of Interior, and the Environmental Security Technology Certification (ESTCP) program, U.S. Department
of Defense (DoD). 



Publications from Prior Projects
1.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic

Attributes and Land Use") - Articles in Refereed Scientific Journals - Nachabe, M. H 2006. Spatially
Distributed Versus Lumped Parameter Models: A proposed Equivalence between the TOPMODEL
and SCS Curve Number Method. Journal of the American Water Resources Association,
42(1):225-235. 

2.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - Said, A., M. Nachabe, M. Ross,
and J. Vomacka 2005. Estimating Specific Yield Using Continuous Soil Moisture Monitoring, ASCE
Journal of Irrigation and Drainage Engineering, vol. 131, no.6. 

3.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - Nachabe, M. H., N. Shah, M.
Ross, and J. Vomacka 2005 . Evapotranspiration of Two Vegetation Covers in Humid Shallow Water
Table Environment. Soil Science Society of America Journal, 69:492-499. 

4.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - Nachabe, M. H., C. Masek, and
J. Obeysekera 2004. Observations and Modeling of Profile Soil Water Storage above a Shallow
Water Table. Soil Science society of America Journal, Vol. 68, No. 3. 

5.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - Hernandez, T., M. Nachabe, M.
Ross, and J. Obeysekera 2004. Runoff from Variable Source Areas in Humid, Shallow Water Table
Environments. Journal of the American Water Resource Association, vol. 39, no. 1, pp.75-85. 

6.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - DeSilva, M., M. H. Nachabe, J.
Simunek, and R. Carnahan 2006. Simulating Root Water Uptake from a Heterogeneous Vegetation
Cover using Finite Element Modeling. (In review). 

7.  2004FL57B ("Sensitivity of the Hydroperiod of Forested Wetlands to Alterations in Topographic
Attributes and Land Use") - Articles in Refereed Scientific Journals - DeSilva, M. and M. H.
Nachabe 2006. Influence of Changes in Land Use and Topographic Attributes on Hydrology of
Shallow Water Table Environments. In preparation. 


	Florida Water Resources Research Center  Annual Technical Report  FY 2005
	Introduction
	Research Program

	<Untitled>
	
	Development of an integrated methodology to assess vulnerability of groundwater to pathogen intrusion using GIS, remote sensing, neural networks and neuro-fuzzy methods
	Basic Information
	Publication



	Microsoft Word - Dixon_FWRRC_REPORT_FINAL2005-06.doc
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	<Untitled>
	
	Mechanisms and Modeling of Soft-Bed Nutrient Release in Lakes
	Basic Information
	Publication



	Microsoft Word - Jain et al., INTERCOH 2005 pp.doc
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

	<Untitled>
	
	Space-based monitoring of wetland surface flow
	Basic Information
	Publication



	Microsoft Word - Wdowinski_report.doc
	page 2

	<Untitled>
	
	Information Transfer Program

	<Untitled>
	
	Information Transfer
	Basic Information
	Publication



	Microsoft Word - Info_transfer_blank.doc

	<Untitled>
	
	Student Support
	Notable Awards and Achievements
	Publications from Prior Projects



